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7 The environmental assesément of human activities is presently a hot topic. It is not only important from an
““ecological perspective, but also from the view of efficient utilisation of hmited natural resources such as fuel, land

~area, water und phosphorus. The environmental impact of food of animal origin is currently quantified by so-

called COch'footprints (Carbon Footprints: CF),

To define CF, emissions arising along the food chain will be calculated accordmg to their greenhouse potentials
{carbon dioxide = | eq; methane =23 eq, laughing gas =300 eq). For the primary productlon of milk, meat and
cggs, emissions during crop production, transportation, the storing and processing of feeds, animal keeping,
enteric losses and excrement management can be mentioned as examples.

Data for CF of food of animal origin and edible protein are deduced in the paper. Furthermore reduction

potentials and research need are summarised,
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1. Introduction

The present situation all over the world is charac-
terised by various growing processes such as;

e Growing population and growing need for feed
and food (Steinfeld et al. 2006; FAO 2009;
Godfray et al. 20]0)

e Growing need for limited resources such as fuel,
land area, water, phosphorus and further re-
solurces

e Growing emissions such as greenhouse gases
(e.g. COy, CHy, N,O, ete.; TPCC 2006; Steinfeld
et al. 2006; FAO 2010) and other substances
{e.g. N, P, some trace elements)

For example, the atmospheric CO, concentration
increased from =280 (nineteenth century) to 380
ppm (presently) and will probably increase to 550
ppm in 2050 (TPCC 2006) because of carbon burning
from fuel and other activities. This increase is
discussed in connection with global warming and
climate change (IPCC 2006). Presently the global
greenhouse gas (GHG) emission is estimated to be
more than 40 billion tomnes (t) COs-equivalents
(COa.y) per year, about one-third should come from
agriculture (Isermeyer et al. 2008). The global grow-
ing rate is presently given with &1 billion tonnes
COsey per year. This increase provoked considera-
tions to assess the emissions by so-called Life Cycle
Assessment (LCA), also called eco-balances or

CO;-fcarbon-footprints (CF)} for manufacturing var-
ious products including food. The CF means the sum
of all climate relevant emissions under consideration
of their greenhouse potential such as ‘1 for CO,,
23 x CO; for CHy and =300 x CO; for N,O (IPCC
2006). The footprints are given as COs-equivalents
(CO2eq) in gram or kilogram per product. The aim of
the footprints is to sensitise producers and consumers
for an efficient use of fossil carbon sources and to
reduce greenhouse gas emissions per product. Pre-
sently some companies already label their products
with such footprints.

The objective of the present paper is to introduce
footprints, to deduce CF for the primary agricultural
production of selected food of animal origin, to come
to reduction potentials, to open questions, and to
further research needs. Food processing, trade and
kitchen work are not considered in the present paper.

2. Materials and methods

The fundamentals to deduce and to decrease CF are
described briefly in this chapter (see also Cederberg
and Stadig 2003; Basset-Mens and van der Werf 2005;
Williams et al. 2006; FAO 2010; IDF 2010; JRC 2010;
Peters et al. 2010; Rotz et al. 2010). Knowledge
about the emissions of greenhouse gases along the
food chain (value-added chain, Figure 1) is the most
important prerequisite for calculation of CF. Figure |
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Figure 1. Substantial elements of the chain to produce food of animal origin as well as selected inputs of resources and outputs

of greenhouse gases.

shows some important inputs into the food chain and
outputs along the chain. In the case of food of animal
origin, knowledge of emissions from manufacturing
resources (plant production, harvesting, transporta-
tion, storage, conservation, processing in feed mills,
animal keeping, etc.) and animal-caused emissions
from the digestive tract and the excrement manage-
ment are fundamentals for further calculations. On
the other hand, animal yields or products such as
milk, eggs or food from the animal body, such as
empty body weight or meat are considered as outputs.

. Finally calculations are carried out to find CF for
. edible protein of animal origin to compare various
i protein sources.

2.1. Emissions from manufacturing resources

The values of COy-emissions from fuel depend on the
intensity of farm management especially from type
and amount of fertiliser, but also from the plant
yields and the expenditures for transportation, feed
processing and animal keeping.

Table 1 summarises some values of COy-emissions
from manufacturing resources under European con-
ditions for various feeds by different authors. There is
a considerable variation between feeds and authors.
In most cases, organic farming shows lower CO.-
emissions per area and per product than conventional
agriculture. The 0.12 kg CO;, per kg dry matter (DM)
of roughage and 0.22 kg CO, per kg DM of
concentrate (average of some reviews, see Table 1)
were used for further calculations of CF,

Less data are available for COs-emission for feed
transportation and processing (se¢ Bockisch et al,
2000; Feil 2005) and animal keeping (see HEA 1996;
Bockisch et al. 2000; Brunsch et al. 2008; Hirschfeld
et al. 2008). The LCAs have to include all energy and
material inputs in the food chain (Peters et al. 2010).
Further studies are required to guantify all processes.

2.2, Animal caused emissions

Methane (CH,) is one of the most important green-
house gas emissions from livestock production.
Especiaily ruminants emit CH, as an unavoidable
natural by-product of rumen fermentation because of
their microbial settlement in the rumen (Figure 2).
Mainly methane is produced from CQO, and H; (see
Baldwin 1995; Mills et al. 2001; Kebreab et al. 2006).
On the other hand, and caused by the microbes,
ruminants have very important potentials to convert
cellulose and other low quality roughages as well as
non-protein nitrogen-compounds in food of animal
origin (e.g. milk and meat).

The methane amount varies between 4 and 10%
(extreme values are given between 2 and 15%, sce
Flachowsky and Brade 2007) of the gross energy of
the feed and depends on ration composition (Table 2)
and added supplements with methane reduction
potentials. The hindgut fermentation generally con-
tributes to less than 10% to the total enteric CH,-
production (Kebreab et al. 2006). Apart from rumi-
nants, non-ruminants also emit methane but to a
much lower extent than ruminants (Table 3). About
40% of the global methane emission (240 Mio 1)
falls to animal husbandry. There are large differences
between various regions {Table 4). Methane emissions
arising from excrements may be reduced by utilisation
of excrements for biogas-fermentation.

Recently many papers were published about the
origin of methane, methane emission, influencing
factors on methane fermentation and models to
calculate methane emission (e.g. Kebreab et al.
2004; Flachowsky and Brade 2007; Tamminga et al.
2007; Bannink et al. 2008; Beauchemin et al. 2008;
Ellis et al. 2008; Jouany 2008; Kreuzer and Soliva
2008; Mills 2008; Place and Mitloehner 2010), There-
fore no further details should be discussed here,

Food producing animals do not excrete laughing
gas {N,0O). They excrete various N-sources with
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Table 1. Examples for COx-emissions from manufacturing
resources of various feeds (by various authors).

COyemission

Feed (kg/kg DM) Authors
Roughages 0.07* Bockisch et al. (2000)
Pasture/grass 0.22% Bockisch et al. (2000)
0.10 Brunsch et al. (2008)
0.12-0.15 Kim and Dale (2004}
0.10 Kraatz et al. (2006)
Grass silage 0.24° Bockisch et al. (2000)
0.09% Bockisch et al. (2000)
0.12 Brunsch et al. (2008)
0.17 Kraatz et al. (2006)
Corn silage 0.09" Backisch et al. (2000)
0.15° Bockisch et al. (2000)
0.12 Brunsch et al. (2008)
0.15 Kraatz et al. (2006)
Hay 0.09* Bockisch et al. (2000)
0.25% Bockisch et al. (2000)
0.12 Brunsch et al. (2008)
0.i19 Kraatz et al. (2006)
Concentrates 0.27 Abel (1996)
Triticale 0.19* Bockisch et al. (2000}
Corn 0.21* Bockisch et al. {2000)
Barley 0.31% Bockisch et al. (2000)
Wheat 0.26 Brunsch et al, (2008)

0.32% Brunsch et al, (2008)

0.25-0.29 Kim and Dale (2004)
0.20 Krataz et al. (2006)
0.50" Kiistermann et al. (2007)
0.36° Kiistermann et al. (2007)

*COy¢q in organic farming.

different propensity to ammonia (NH;)-formation
(Figure 2). For example ammonia develops much
faster from urea than from uric acid. Ammonia is
considered as an important precursor for N,O-
formation (Figure 3), which depends mainly on
microbial activities in the soil. Furthermore N,O-
formation s influenced by a source of N, soil quality,
moisture, temperature and management of soil as
summarised by Flachowsky and Lebzien (2007).

Normally the N;O-emission depends on an
amount of N-fertilisation (I'able 5), but there also
exist studies where the NyO-emission is independent
of the level of N-fertilisation (Oenema et al. 2005;
Roelandt et al. 2005; Jungkunst et al. 2006). The
N2O-emission may vary between 0 and about 10% of
N-amount given to the land (see Bockisch et al. 2000;
Hirschfeld et al. 2008). Normally the IPCC (2006)-
value of 1.25% of N transferred to N>O-N in the soil
is used for calculation of N-emissions from the soil.
In some cases this average value may be wrong
(Bockisch et al. 2000; Crutzen et al. 2007). Reduction
of N-excretion via urine of amimals would be
an important contribution to lower N,yO-emissions
(Flachowsky and Lebzien 2006; Arriaga et al. 2010;
Calsamiglia et al, 2016).
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2.3. Animal yields
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Edible protein of animal origin is one of the most: S moisture maisturo moisture meisture

important objectives of animal keeping in many
countries. Based on feeding and slaughtering studie
at our institute, edible protein was measured (see
Flachowsky 2002) for various animal species an ¢ teduction in animals (Flachowsky and
categories under consideration of animal perfor 9).
mance, the edible fraction and the protein concentra.
tion of samples (see Table 6). There are larg
differences in edible protein per animal and day o
per kg body weight and day depending on anima
species and category as well as their performance
and the fractions considered as edible. :

otprints for various food of animal origin

s mentioned above and further variables
-the lével of CF and their range as shown in
. milk by various authors (0.4-1.5 kg
milk). FAO (2010) calculated CF across
orld regions and found a range from 1.3
pe and North America) to 7.5 kg (in sub-
frica) per kg of milk. The average global
the process of milk production, proces-
ansport was estimated to be 2.4 kg per kg.
wide impact possibilities and the high
the precisions of some data are unex-
e EU the average for cow milk is given
COhq/kg (JRC 2010).

1¢ highest CF and high variations are
for beef (Tables 9 and 10). The values
ced by body weight gain, feeding and the
limits. (Table 9). The highest values were
¢ with.beef cows (Table 10). The base for
ch as body weight gain, hot standard
ass weight:or empty body weight, edible fraction,
'Bi_e protein has an important influence on
Peters et al. 2010). In a recent publication,

24. Calculation of carbon footprints

The level of CF for food of animal origin depends
primarily on the system limits (Figure 1); that means
which emission sources will be considered for calcul
tions and which animal yields are the basis for
calculations. The principles to calculate CF are shown
in Figure 4. _

Table 7 demonstrates the calculations of CF for
milk under consideration of fertiliser production,
feeds, transport, processing, rumen fermentation
and excrement management. Reproduction of cows,
emissions from the previous achicvements (e.g. ma-
chinery, cowshed, etc.), further processing, trade of
milk and kitchen work have been not considered in
the calculation of Table 7. About one-half up to two-
thirds of total CF of milk and other ruminant
products come from the enteric methane emission
Similar or higher values can be calculated for becf
(see Tables 9 and 10) as well as sheep and goat meat
(JRC 2010). Therefore studies to reduce the methane
emissions from the rumen and to use methane from

ethane per kg dry matter in dependence on
ition of ruminants (by various authors).

; Q 13
the excrement fermentation (see Table 4) have a high 7 of %;?jls( :nergy Dl\f_’?;%ake
priority. Presently, many in vitro studies to lowe
methane emissions have been done (see Flachowsk 8-10 25-40
and Brade 2007), but long-term in vivo studies are. g:g %g:%g

necessary to measure the sustainability of treatmen

ortant N-sources in excrements and their propensity to NHx — formation.

Peters et al. (2010) summarised CF from 18 studies
and found values between 5.9 (pasture; Africa) and
25.5 kg COy-equivalents per kg empty body weight.
Similar values were calculated in our own studies
{Table 8). Once again, the grade of accuracy of the
data raises questions.

Adequate values as shown in Tables 9 and 10 have
been measured for mutton sheep meat (10.1-17.5;
Peters et al. 2010). Similar calculations were done for
pork, poultry meat and eggs (e.g. Williams et al. 2006;
Fritsche and Eberle 2007; Heissenhuber 2007; Hirsch-
feld et al. 2008}. The authors compared conventional
with organic farming (Figure 5). The results are
characterised by a high variation between food
sources and authors. There is no clear tendency
concerning production system. Fritsche and Eberle
(2007} calculated lower CF for organic farming, but
there were no clear trends in the studies of all other
authors {(Figure 5). In a recent EU-calculation (JRC
2010}, the averages for beef, sheep and goat meat,
pork, poultry meat and eggs in the EU-27 are given
with 22, 20, 7.5, 5, and 3 kgCOs./kg product.

Table 3. Methane emission by various animal species {(by
various authors).

Methane-emission

% of gross energy

Animal intake {average and g/kg DM-intake
group range) (average and range)
Ruminants 68 (2—-15) 20-25 (10-40)
Horses 2-3 (1-5) 6-8 (2-12)
Pigg* 0.5 (0-2) 2-3 (0-8)
Poultry® (0-0.3) (0-1)

*Highest values in sows, lowest values in piglets.
Higher values with more fibre in diets {e.g. forage for laying hens,
ducks, geese).
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Table 4. Methane emissions from food producing animals
in various regions {(in Mio. {/year, Steinfeld et al. 2006).

Methane-emissions

Excrement-

Repgion O Dlgestlon

s:b_a__n_dr:y in'many

itable parameter to compare various ways of
animal production from the view of feed/resource
efficiency and emissions. Table 11 summarises emis-
sions per kg edible protein of various animal species
and categories in dependence on their performances,

On the base of edible protein, the highest CFs
were calculated for beef, followed by milk from low
vielding cows because of the methane emissions from
ruminants (see Table 7).

4. Assessment of carbon footprints

Carbon footprints should sensitise producer and
consumer in the efficient use of limited natural
resources especially fuel and to a low emission of
greenhouse gases, But the CF should not be over-
estimated because of some weaknesses, Presently
there is an urgent need to fill out the gaps for such
CF-calculations. Sometimes there are contrary dis-

|
Noa/.Nozw- NO“—f N,

! /
NH; — NH,OH — NO,

A NO—*—-*NZ

Figure 3. Laughing gas (N,O) from ammonia (NHj: by
Wrage et al. 2001),

Imdnagement. .

cussions about the global climate change, especiaily
on the significance of CO, for the greenhouse effect
(see Keil 2009). But CO, from limited fossil energy
sources contributes significantly to CF and, therefore,
a reduction of CF may substantially save such energy
sources The correldtlon between CF and prlmary

h assessments and rankmgs of foods of animal
rigin: on the base of CIF on the present stage of
nowledge (Figure 5) may lead to preliminary and
possible wrong conclusions for policy- and decision-
makers. Furthermore there could be the impression
that ‘all things are clear’ from the scientific point of
view and there is no need for any further research.
But the following research activities seem to be
necessary to qualify and improve the CF:

e Further quantification of emissions along the
food chain (see Figure 1) under consideration of
influencing factors such as:

— Better quantification of laughing gas emis-
sions (see Figures 2 and 3)

— Better quantification of manufacturing-
caused emissions

- Improvement on knowledge on enteric and
management-caused methane emission

— Standardisation of methods; clear definition
of system borders (see Figure I; Zehetmeier
2009; FAO 2010; JRC 2010)

o Improvement of knowledge to reduce emissions

along the food chain (see Figure 1)

— Lower CO5-emissions

— Reduction of N-excretion (especially urea-
excretions by animals, see Figure 3)

— Reduction of enteric methane emissions, use
ol excrements in biogas-fermentation

— More in vivo studies to assess the emission
reduction potential of various measurements
(sece Flachowsky and Lebzien 2009; Lopez
et al. 2010)

o Assessment and consequences of ‘modern’ bio-
technology on cmissions (sec Capper et al
2008)

A cooperation of animal scientists (e.g. nutritionists,
breeders, animal keepers, veterinarians, etc.) with
scientists working in the fields of plant and feed
science, ecology and economy seems to be necessary
to solve the problems and to develop better and
loadable CF.

But CF is only one way to assess and compare
various foods of animal origin. Apart from low

Table 5. NyO-emissions in Germany from arable land and grassland in dependence of fertilising (Jungkurist': 'et-al'-'.2006)

Journal of Applied Animal Research

Average (kg N’)O N Minimum (kg N,O-N  Maximum (kg N20 N

Form of cultivation Fertiliser Number H ha=la s ha='a™!
Arable land - 9 1.35 0.04 2.50
+ 50 4.85 0.07 17.1%
Grassland - 16 1.18 0.10 3.40
+ 28 2.15 0.30 16.00

emissions, there is also a need for a more efficient use
of limited natural resources such as arable land,
water, fuel, phosphorus, etc. Furthermore many
products such as grass, straw and other by-products
from agriculture and food industry may be effectively
used as feeds in animal nutrition especially in
ruminant nutrition. Therefore, a more complex
assessmment of various ways to produce food of animal
origin seems to be helpful and necessary. Figure 6
shows, on the base of a simple calculation, such an
example for protein production by beef and pork. Six
factors were considered in the spider web (luel, area,
water, phosphorus, CF and ‘absolute’ animal feed).
Situation 1 is [ixed as unfavourable, 0 would be the
best situation. There is an urgent need for further
development and improvement of such models (con-
sidering further factors, evaluation of factors, ways of
calculation for total assessment, etc.). A total assess-
ment would be possible by addition of individual
values (0-1) or by calculation of the area in the spider
web. Coming back to the examples in Figure 6, nearly

for beef and pork under consideration of the values
assumed in this simple model.

5. Reduction potentials and research need

Carbon footprints and their influencing factors
should be considered along the whole food chain
(see Figure 1). For reduction of CF and research
needs, one may distinguish into short (see chapter 4),
medium and long-term programmes. The introduc-
tion of known and resource-efficient management
factors in the present farming systems should be
considered as short-term measures. Topics of present
research and their introduction into farms are on the
middle-term time scale, Research for the future and
the application of those results to farms are on the
long-term scale.

The following paragraphs will analyse the inputs
of limited resources in plants for feed production and
of feed to food-producing animals and their outputs
from the view of animal nutrition. Furthermore it will

the same total assessment value could be calculated find solutions for lower inputs and environmental

Table 6. Influence of animal species, categories and performances on yield of edible protein (by Flachowsky 2042).

Protein in Edible
Roughage to Edible edible Edible  protein

Dry matter concentrate fraction (%  fraction (g protein (g per kg
Protein source Performance  intake (kg per ratio (on DM  of product or per kg fresh (g per body
{body weight) per day day) base, %) body mass) matter) day) weight)
Dairy cow (650 kg} 10 kg milk 12 90/10 95 34 323 0.7
20 kg milk 16 75/25 646 1.0
40 kg milk 25 58/50 1292 2.0
Dairy goat (60 kg) 2 kg milk 2 80/20 95 36 68 1.1
5 kg milk 2.5 50/50 170 2.8
Beef cattle (350 kg) 500 g® 6.5 95/5 50 190 48 0.14
1000 g* 7.0 85/15 95 0.27
1500 g* 7.5 70/30 143 0.41
Growing/fattening 500 " 1.8 20/80 60 150 45 0.56
pig (80 kg) 700 g* 2 10/90 63 0.8
1000 g* 2.2 0/100 81 1.0
Broiler (1.5 kg) 40 g* 0.07 10/90 60 200 4.8 3.2
60 g* 0.08 0/100 7.2 4.8
Laying hen (1.8 kg)  50%7 0.10 20/80 95 120 3.4 1.9
70%" 0.11 10/90 4.8 2.7
90%" 0.12 /100 62 34

“Daily weight gain.
Laying performance.
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Table 9. Calculations of CF for beef (150-550 kg body weight) in dependence on weight gain, feeding, methane- and
»* N-emissions (Flachowsky 2008b).

Tabte 8, CF per kg milk in dependence on type of

Calculationof COz-footprints
production (by various authors).

(Dammgenet al. 2009)

*Without calf and heifer.

must be the most important objectives for plant
breeding and biotechnology in the future (The Royal

{beef cows, fattening bulls; 40% meat yield)

s Type of production CO2eq (ke/ke)
fertilizer :
production Conventional ;o Feed intake
P 41 a C{/ (kg COaeq/kg milk) Organic Authors % ' (lfg/DM/’ Portion Mt?th'ane N—. N,O-synthesis ) Empiy
crop Tk/d Own data (2008 - Weight gain animal and concentrate (%  cmissions  excretion {% of N- Weight  body Edible
production 82(5) gg Iﬁg gﬁik;’ d:ig O‘\:jg d:;; E 00 8; 1 (g/day) day of DM-intake)® (g/kg DM) (g/day) excretion) gain gain  fraction
L 1.00 (10 kg milk/d Own data (2008) ;
P : .00 (10 kg milk/day) wn data ] 500
[ processing | 0.65 (not given) Daemmgen and Haenel _ (Pasture, no 6.5 0 26 110 2 11.5 23.0 28.0
P J1 (2008) ' © concentrate)
0.65-0.75 Basset-Mens et al. i 1000
N (2009) . (Indoor, rass 70 s 24 130 1 55 110 138
8 a4 1.00 Cederberg et al. (2009) : silage, some
animal 1.35 Capper et al. (2008) concentrate)
metabolism 2.4 (1.3-7.5) FAO (2010} 1500
<5 o 1-2 (Europe, North FAO (2010) (Indoor, corn 75 30 2 150 0.5 3.3 7.0 9.0
America) silage,
gL //_ 3.7 North Africa, Near FAG (2010) concentrate)
el - East
‘C‘ 4.6 (South Africa) FAQ (2010) *CO,-output: 120 g/kg roughage-DM and 220 g/kg concentrate-DIM.
4L ‘/— 7.5 {sub-Saharian FAQ (2010)
& Africa)
{_spreading | 0.83 0.84  Woitowicz (2007) Society 2009). § . L \ , _
. y ). So-called low input varieties should be and food must be decreased by new breeding
¥ <> i » 0.85 0.78  Hirschfeld et al, (2008) e Dosis For the. socond Tt . \ A
o | ™ o l | soll | 089 113 Fritsche and Eberle the basis for the second green revo ufion (SCAR technqlogws {Tester and Langridge 2010). The ex-
(2007) 2008; The Royal Society 2009; Fedoroff et al. 2010) pectations for plant breeders from the global per-
‘ 0.94 0.88  Fritsche and Eberle for more efficient utilisation of limited resources and spective and the view of animal nutritionists can be
waters 097 - (2003) Ziipp (200) lower emissions along the food chain (see Figure 1). summarised as followed (by Flachowsky 2008a, see
- . van der Zypp Fixation of nitrogen from the air (similar to legumes) Table 12):
94 Cederberg and . . ’
co, # * O 0.9 0.9 lvfa;;sg;g(;(r)}OO) should also be an aim of plant breeding (see Table
CH, B A NO 106 123 Williams et al. (2006) 12). Furthermore, the plants must be resistant against e Efficient use of limited natural resources such
QA NH, 1.30 1.30  Haas et al. (2001} biotic and abiotic stressors and the losses during as water, fuel, land or crude mineral resources
Figure 4. Calculation of CO,footprints (by Daemmgen 10 150 Thomassen et al. (2008) harvesting and plant storage, and processing to feed (low input varieties)
et al. 2009). )
unfriendly outputs. The efficient use of limited Table t0. CF per kg empty body gain of beef cattle in dependence on type of production (by various anthors).
natural resources, food security and environmental CF (ke CO Ik - -
Table 7. Calculation of emissions per cow and year issues are strongly connected issues with long-term F (kg COaqy/kg empty body weight gain)
g%%roaf;wmfs: b?dyl Wfilé%hti 559 k%) per cow, 'mng)(/ieldi' significance. Recently some international organisa- Type of production
2008) & per year, 1 cail per year, Lacmmgen and Hacne tions or research teams (e.g. Steinfeld et al. 2006; - -
i Koning et al. 2008; SCAR 2008; Bruinsma 2009, Conventional Organic Authors
Emissions (kg per FAQO 2009; Fischer 2009; The Royal Society 2009; 8.5 29.0 (beef cows) Reitmayr (1995)
cow per year) Godfray et al. 2010) have analysed and assessed the 8.7/10.1 _ 10.2 Woitowicz (2007)
e resent and future global situation. These studies 9.9 (grain finished) 12.0 (grass finished) Peters et al. (2010)
.Source of emissions CO, CH;y NO P £ ) Lo 13.3 11.4 Fritsche and Eberle (2007)
conclude for future research needs and priorities. 158 182 Williams et al. (2006)
ggéshw 2;2 5.5 i é Unfortunately, most attention has been paid to plant 15.2 175 Schlich and Fleissner (2005)
) science and no, or less, attention has been given to the 23.6 20.2 Casey and Holden (2006)
Transport treatment 43 . . . 24.5
Rumen fermentation 119 improvement of food-producing animals. . 209 Subak (1999)
Fermentation of excrement 19 0.9 No distinction conventional/organic
management 5.9-10.4 Verge et al. (2008)
Emissions from soil 1 1.8 5.1. Wishes to plant breeders 7.0-23.0 Flachowsky (2008b)
Total 336 143 L. ) ) 10.1 Cederberg and Stadig (2003)
COy-equivalents (kg/cow and vear) 5200 Phytogenic biomass by the photosynthesis of plants is 11.5 Wechselberger (2000)
{g/kg milk)* 650 the basis for animal and human beings. The better 15.6 Casey and Holden (2006)
C(()kz-?qui\)/alems of emission 336 3290 1500 utilisation of sun energy and p]ant nutrients such as : ;gg Egalfy COwWS, bulls} FﬁO (2010)
E/cow) CO,, N, P, etc., water, and various trace elements ' -2 (beef cows, calves) FAO (2010)
(% of total emissions) 6 65 29 2, N2, T, OLC., WATEL, and vanou . 364 Ogino et al. (2007)
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Figure 5. CF of food of animal origin from conventional
and organic farming by various authors.

e Higher energy and nutrient vield per limited
resource

o Intensive use of unlimited resources such as N,
CQO,, sun energy and the genetic pool

e Higher resistance to plant and animal pests as
well as abiotic factors (e.g. drought, salinity)

e Reduction in the content of undesired (antinu-
tritive) components (e.g. substances that influ-
ence the availability of nutrients, toxic
substances, mycotoxins, etc.)

e Increase in the content of value-determining
components {e.g. nutrient precursors, nutrients,
enzymes, probiotics, flavourings)

The plant breeders should react to the changed
natural conditions (e.g. more CO;) and to the limited
natural resources as shown in Table 12

5.2, Wishes to animal breeders

Animal breeders made some progress in genetic
modification of domestic animals in recent years
(Robi et al, 2007). Up to now much attention has
been devoted to applications in biomedicine as
recently summarised by Kues and Niemann (2004)
and Niemann and Kues {2007), but a more efficient
conversion of food into milk, meat and eggs and lower
emission were not intensively considered by animal
breeders (Reynelds 2009). Various possibilities exist
to modify animals for a better utilisation of feed into
food of animal origin and as a consequence to have
lower emissions per product as summarised below:

e Higher feed intake of animals to improve the
ratio between energy/nutrient requirements for
maintenance and animal yields (see “Energy and
Nutrient Requirements’ of various scientific
societies)

o Higher digestibility of feed to make energy/
nutrients more available from the feed (higher
expression of enzymes or more efficient en-
zymes in the animals); higher absorption of
digested nutrients

e Reduction of energy losses in the digestive tract
(e.s. CHa)

Table 11. Infleence of animal species, categories and performances on emissions (per kg edible protein, own calculations).

Emissions in kg per kg protein

Methane
Protein source Performance N-excretion emission
(Body weight) per day (% of intake) (g per day)® P N CHS COoeq

Daairy cow (650 kg) 10 kg milk 75 310 0.10 0.65 1.0 .30
20 kg milk 70 380 0.06 0.44 0.6 16
40 kg milk 65 520 0.04 0.24 04 12
- Dairy goat (60 kg) 2 kg milk 15 50 0.08 0.5 0.8 20
5 kg milk 65 60 0.04 0.2 04 10
Beef cattle (350 kg) 500 g* 90 170 0.30 23 35 110
1000 ¢* 84 175 0.18 1.3 1.7 55
1500 g* 80 180 0.14 1.0 1.2 35
Growing/fattening pig (80 kg) 500 g2 85 5 0.20 1.0 0.12 16
700 g* 80 5 0.12 0.7 0.08 12
900 g* 75 5 0.09 0.55 0.05 10
Broilers (1.5 kg) 40 g* 70 Traces 0.04 0.35 0.01 4
60 g 60 0.03 0.25 0.01 3
Laying hen (1.8 kg) 50%° 80 Traces 0.12 0.6 0.03 7
70%° 65 0.07 0.4 0.02 5
90%" 55 0.05 0.3 0.02 3

“Daily weight gain.
Laying performance.
“CHs-emission depending on composition of diet.

" Plant nutrients in the atmosphere (N2, CO,)
i Sun energy

. Agricultural area

- Water

+ Fossi] energy

: Mineral plant mutrients

“:Variation of genetic pool

Beef {(Sum: 3.8}

Phosphorus
1
4
0,6
COZeq ' Water
0.4
0,2
Utilization of Arable
absolute feed Land
Fuel
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Figure 6. Proposal of complex assessment of production of pretein of animal origin on the base of beef and pork under

consideration of various parameters.

e Lower energy/nutrient requirements for main-
tenance of animals

o Lower energy need for protein synthesis in the
body or increase of anabolic processes and
lower catabolic processes in the animal

e Lower [at content in animal bodies, lower
excretion of fat in milk and eggs, or lower
excretion of lactose in milk (lower energy
content in food of animal origin)

An improvement of animal health, more stability
against biotic and/or abiotic stressors, and lower
animal losses may also contribute to a more efficient
conversion of feed into food and lower emissions per
product. Special attention must be spent to the
welfare and the nutrition of such modified animals
(Maga and Murray 2010),

Research activities mentioned above could be
considered as sustainable on the long-term scale.
They are the basis for a more efficient conversion of
limited resources into plant biomass and animal
products and also for lower emissions per unit milk,
meat and eggs or per kg edible protein of animal
origin.

Table 12. Potentials to produce phytogenic biomass and
their availability per inhabitant under consideration of
ncrease of population (Flachowsky 2010).

—

-1 Increase, | Decrease, < no important influence.

6. Conclusion

At the present stage of knowledge, ranking of food of
animal origin on the basis of CO,.,-footprints may be
indicative of product produce and CF, but may also
lead to wrong conclusions in the absence of complete
information on the chain of production and proces-
sing. The database for CF needs to be improved
before it may contribute to the assessment of green-
house gas emissions during the primary production of
food of animal origin. Further factors such as limited
natural resources or utilisation of grassland or
agricultural/industrial by-products should be consid-
ered for a complex assessment of various production
systems in future. More attention should be given on
reduction potentials and research for a more efficient
conversion of natural resources in feed and food and
in consequence to lower emissions per product and
more interdisciplinary cooperation.
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